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It is demonstrated that the alignment echo of °Be is quite
useful for detecting ultraslow atomic motions in the metallic
glass Zr,g 75 Tig ,5CU, sNi o Be,, 5. The time scale of detectable
atomic motion is between T, = 1.5 ms and T, of a few seconds.
Similar to previous works of ?H NMR, the Jeener-Broekaert
sequence is used to create quadrupolar order for spin-g nuclei
upon nonselective excitations. Since the chemical and Knight
shift distributions are not negligible for °Be, the proper choice
of the dephasing time between the first and the second pulses is
essential for achieving pure quadrupolar order. It is demon-
strated experimentally that slow atomic motions contribute
significantly to the decay of the alignment echo near the glass

(t% < +3) transitions by RF pulses. This permits the creation
of quadrupolar order using the Jeener—Broekaert sequen
(4, 19). Unlike 2H, the Knight shift and the chemical shift
distributions of°Be are not negligible. To achieve pure qua-
drupolar order, effects of such distributions need to be mini
mized. In the previous multiple-quantum filtration experiments
in liquid-type environments, a 180° pulse is applied in the
middle between the first and the second pulses to eliminate tt
effect of Zeeman interaction distribution2—14. However,
this method is limited by the inhomogeneity of the RF field
throughout the sampld ); this is particularly true in metallic

transition temperature. © 1998 Academic Press
Key Words: alignment echo; quadrupolar order; °Be; ultraslow
motion; metallic glass.

systems where the skin depth is very small. In this work, it i
demonstrated that a proper time interealbetween the first
and the second pulses can be chosen convenienti§Bitto
achieve pure quadrupolar order. The resulting alignment ech
following the third pulse is shown to be sensitive to slow
atomic motion activated nedi,.

INTRODUCTION

Recently, significant progress has been made in the devel-
opment of metallic glasses. For instance, it was discovered that
the metallic alloy Zjg ;5T sNi;gBeyy 5 (Z—Ti—Cu—Ni— L )
Be) exhibits extraoirsdﬁafyzsgjetg fé?mzzgilsity as well as high Assume that the truncated Hamiltonian in the rotating fram
resistance to crystallization in the supercooled liquid sta)e (c0n5|§ts of the flr_st—order guadrupole interaction and the Zee
The study of slow atomic motion in metallic glasses is cruci&an interaction given by
for the understanding of the nature of glass transition as well as
the thermal stability of metallic glasses. NMR has been used in
the study of glass transition in polymerg).(It has distinct
advantages in the study of atomic motion, such as the wi
range of accessible time scale and the microscopic nature of
technique. In particular, various NMR techniques have be
used to detect ultraslow atomic motion, including the te
niques of dipolar order relaxatioB), °H alignment echo4),
the stimulated echds( 6), and two-dimensional chemical ex-
change 2). However, since the time scale of atomic motion
near the glass transition temperatiliggs expected to be on the
order of a second, NMR study of glass transition in metalliwith RF pulses being nonselective. In the current discussion,
glasses is potentially hampered by the typical short spin—lattisechosen to be larger than the dipole—dipole relaxation Tigne
relaxation timeT, in metallic systems. andr, < T,. 6" and#” are the flipping angles of the second and

In this study we report the ideal features 8fe (sping) for the third pulses, respectivelyi’ and ¢” are the phases of the
studying slow atomic motions in metallic systems using theecond and the third pulses, respectively, with respect to tt
alignment echo technique. First; of °Be is very long, typi- first pulse. Without losing generality, we assume that the firs
cally on the order of secondd,(8). Second, the quadrupolepulse is a 90° pulse along thyeaxis described by the Hamil-
interaction is usually small enougf,(9, 1Q to allow nonse- tonian 3 = (w/2)l,. Since the density operator in thermal
lective excitations of both the centréle(» —%) and the satellite equilibrium can be considered a§0) = |,, the first pulse

BASIC THEORY

H = (31212 + Bl,, [1]

erel?=12+12+12, « is proportional to the nuclear quadru-
fe constant, ang is the frequency offset with respect to the

frequency. Consider the evolution of the spin system unde
CtP'ﬁe Jeener—Broekaert sequent#) (

9 Q}—Tl—ﬂ o—T2—0"y—t [2]
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TABLE 1

Irreducible Tensors T,

Expressed in Terms of I,
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Note.The definition of the irreducible tensor operators is based on the convention adopted i1 Reff§.\fith the normalization condition Tﬂ{Iqu,q,} = S Bqq-

simply converts the density operatord®, ) = |,. The density and

operator immediately after the second pulse is given by

p(7is) = ROy )exp(idm )l expider) R™(0;),  [3]

where R(6,) exp(—i¢'l )exp(=io’l,)expid’l,). Equation
[3] can be written in the form

p(ti) = exp — id'l,){cosber Ac(0', a' 1)

— sin b Ay(0', o' 1) fexpigp’l,), [4a]
where

A(6, at) = exp(=i6l,)exp(-3ial 27)l,exp3ial 27)expiol,)
[4b]

A6, at) = exp(=iol,)exp(—3ial 2 7)l,exp3ial S T)expiol,)
[4c]

and ¢y = ¢’ — B'm. o' and B’ are the values oé and g3,
respectively, during the time periagl. Sincer, is assumed to be
longer thanT,, only the diagonal part 0p(7;,), pgiag (Which
commutes witH,), persists at the end of the time interval py;oq
can be expressed as a linear combination of zeroth-order irredu
ible tensorsT,, (Table 1) withk = 1, ..., 2. Since A (0, a)
changes sign upon 180° rotation around yreis, its diagonal
part, A%296, ar), can only contain terms with odd ranksTf,. In
contrast, sinceA (6, ar) remains identical upon 180° rotation
around they-axis, its diagonal parAS'ag(e, a7), can only contain
terms with even ranks of,,. Thus,pyi,, Can be expressed as
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Pdiag = COS e AL9(0', a’T;) — sin d)efflASiag(G,! a'm) S(t) = —CO0S Pesrr €XNi Deiro)
= COSery 2 fl(6', &' 1) Ty — SN Pegy 2 f(6', &' 1) Tios X E f (0", a'1y) £ (07, —a"t)
oddk evenk oddk
[5] - :
+ 1 SiN e XN Perrz)
wherek =1, ..., 2 andf(0', «'1,) are functions of’ andr,. X > £ (0", a') fi (67, —a't). [8]
The main step in obtaining an explicit expression for Eq. [4] evenk

consists in working out the expressi®(a) = exp(ial?) o _ o
lexp(al?) (I. = I+ il,), which can be carried out (althoughm prmuple, the first term of Eq. [8] can bg eliminated by
quite tedious for largd) using the exponential expansionS€tiNgder = =90 . However, this cannot be implemented by
method (6). An alternative method for derivinG®(a), and choosing the phas#’ if there is a significanp distributiondg.
thus the explicit expression 6§(6, 7), is given in the Appen- A straightforward method to eliminate this first term, and thus
dix. The first term of Eq. [5] originates from the Zeemant© €liminate the central transition, is to choage< (T and
octupolar orders, etc.; it contributes to both the satellite afi = *90°. Under this conditionqr; = 1 has to be satisfied
central transitions upon the application of the third pulse. Ti@ Make the second term non-negligible, as can be seen fro
second term of Eq. [5] originates from the quadrupolar, hex&9- [4]- For a system with both anda distributionda, such
decapolar orders, etc.; it can be verified easily that}ife}] 2 choice ofr, can be made i < da, which is quite common
quantum coherence cannot be created by the third pulse frithauadrupolar nuclei. This method of eliminating the central
this term. Thus, the intensity of the central transition in th&a&nsition works also if the other interactions, represented b
alignment echo is a direct measure of the presence of e Hamiltoniand(’, are present such as the second-orde

Zeeman order. qua<1rlupole interactior_\fnd the dipolar.injteractions; in this cas
The expression of the signal appearing after the third pul€®) ~ = 71 < (8[%']) "~ has to be satisfied.
is given by Forl = 3, f(6, a7) is given by (see Appendix)
S(t) = Tr{exp(—3i’I 2t)exp(=ip’l,t)exp(igd"l,) £,(0, ar) = — iﬁ sin 0[2 + 3 cog6ar)];
X exp(i'l,)expli].)pasgexp(-id,) v
1 '’ 1 U u PN 3
X expif’ly)expli¢’l,)expBl )exp3ia/1 7)1, } f2(0, ar) = 5 sin(260)sin(6ar);
= eXpli defrz) THPaiagEXPI 0”1, )EXP(Bi a1 28)1 3
X exp(—3iaI2t)exp(if'l,)} fs(8, ar) = = sin 4[5 cog — 1][1 — cog6ar)]. [9]

v

= —eXPi eiz) TH P EXP(—16"1 .. . .
Hider) THpazg®XP(101,) Therefore, the explicit expression of the signal can be ob
X exp(3ia’I 2t)], exp(=3ia/I Zt)expli6’l, )}, [6] tained as

whered.q, = ¢ + B't, anda” andp” are the values ak andg, 9 .

respectively, during the time intervalBecause of the possibility S(t) = — 4 isin(¢" - B'7y)€ ¥ FYsin(26")
of atomic motions during the time periad, «" and 8" could be

different froma’ andB’, respectively. Here, the correlation time X sin(20")sin(6a’ 1, )sin(6a"t)

of such atomic motion, (the mean time the nucleus resides at a 1

given environment) is assumed to be longer thaand the jump — —cod¢’ — B'1,)e " FVsin g’ sin 0"
process itself is considered to be sudden. In the last derivation of 4

Eq. [6], exp(-iml )exp(xio”l)expfml,) = exp(i6’l,) has been X {(5— 9 co$6’ — 9 coge"

used. According to Egs. [4b] and [4c], Eq. [6] can also be written

as + 45 co60’' cog6”) + (3 + 9 cog’

+ 9 co26” — 45 cogh’ cogh”)
S(t) = _exqid)effZ)Tr{pdiag[Ax(eny —(X"t)

+iA (0", —a")]}. [7]

X cog6a’T,) + (3 + 9 coge’
+ 9 co26” — 45 co$6’ cogh”)

Sincepgyiag cOmmutes with,, only the diagonal parts G&,(¢”, X cog6a"t) + (9 — 9 coge’

—at) andAy(0", —a"t) contribute to the trace in Eq. [7]. Using B "y , .
the fact that THTeo} = S (17) and Eq. [5], the signa(t) 9 cos6” + 45 cos’ cos'6")
can be expressed in the simple form X cog6a’T;)cog6a"t)}. [10]
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Assuming no slow motion occurs during the time perid L SR T
thena” = o’ andB” = B’ and Eg. [10] contains terms which I ' 1 T ;
form an echo at = 7,. The signal of the echo can be derived
easily from Eq. [10] and is given by

F@47T 1 | ®94T

%cho(t) evenSIrl(zg )SIn(ZO")CO{Ga’(Tl - t)]

intensity (a.u.)

"

+ 2 CoqgSin 0’ sin H’{(5 — 9coge LA ,,,wj-.'wv"ﬂ"! % »fm\w,-?"*"“‘ M"*-w»:mm

- -200 0 200
— 9co26 + 45 cog6’ cogd ') 200 frequer?cy (kHz) 200 frequency (kHz)

T T T T T T T T T T T

1 L
+é(9—9c0§0’—9c0§0’ C (©47T

+ 45 cog6’ cog0")cog6a’ (1, — t)]}, [11]

intensity (a.u.)

Where Cyye, = —Y@l#+#—# (0] _ -0/ +6+B (0]} gng
Codd = __{é [¢'+¢"—p’ (71 Ol 4 dl-d'+d"+p (71+t)]} At 88T, <
1, Coyen = —i sin ¢'é* andC 4y = —cos¢'é?’. Consider the .
case of¢p’ = 90° whereC,, o, = —i€'*" andC,yq = 0; thus, the P E T T T T
intensity of the echo associated with the central transition is zero. ~ *° 10 -3 ﬁequel?cy (kHZ)S o 15
As 7, increasesC,, ., decreases in magnitude whi@,yq in-
creases in magnitude because of the effect of dephasing caused 'ﬁf . (a) The satellite transition line of tf@e spectrum at 4.7 T and (b)
the distribution ofg (e.g., the powder pattern effect). In the I|m|t9 (c) The central transition peak of tiBe spectrum at 4.7 T and (d)
0f18671 > 1, the effect of dephasing leads @ ., = Coqq =

@0 Forg = ¢ = 45°, the echo height associ-

ated with the satellite transition is 0. 8125k, > 1 (normalized process also contributes to the decay of the spin alignment ecl
by the echo height a3, < 1); the echo height associated withpy destroying the quadrupolar order. The contribution of the
the central transition is 0.4028 &8, > 1. spin—lattice relaxation process to pure quadrupolar order dec:

It is clear from Eqg. [5] that pure Zeeman order cannot g much simpler than that to a mixture of Zeeman and octupole

created forl = 3 nuclei by choosings'r; < 1 and¢’ = 0% orders and can be taken into account easily.
both the Zeeman order and the octupolar order will be created

under this condition. In contrast, pure quadrupolar order is EXPERIMENTAL
created fopg;,q under the condition of'r; < 1 and¢’ = 90°.
In this case, the signab..,t) is proportional to the single °Be NMR is used to study the slow atomic motion in the
particle correlation functioqsin(6u(0)ry)sin(6a(,)t)) in the metallic glass Zys ;5T -:CU; Ni;Be,; 5 with the glass tran-
presence of slow atomic motion. The treatment of such a singiéion temperatur@, = 596 K (1). A home-built high temper-
particle correlation function as a result of motion has beerture probe was used to conduct NMR experiments on
discussed extensively(5). In metallic glasses, the slow mo-Chemagnetics CMX spectrometer at both 4.7 and 9.4 T. Th
tion is due to random translational jumps of atoms. It i80° pulse employed is about 3 to s, which ensures the
reasonable to assume that the electric field gradient at amenselective excitations of both the central and the satellit
nuclear site after a jump is independent of that before the jumpansitions.
Furthermore, the number of possible electric field gradients atFigure 1 shows théBe spectra at 4.7 and 9.4 T at room
one nuclear site is large. With such a random atomic diffusid@@emperature. The spectra were obtained by using the quadr
mechanism, the decay of the alignment echo can be simplgle echo pulse sequence. There is no obvious change of t
described as spectra in the entire temperature range of current investigatio
The spectra consist of two components. The full-width a
Secholt) < exp(=Q1,), [12] half-height (FWHH) of the broad line is about (16010) kHz
atboth 4.7 and 9.4 T, as shown in Figs. 1a and 1b, respectivel
where() is the jump rate of atoms. Therefore, the time scale &uch field independence of the linewidth suggests that th
the slow atomic motion can be directly obtained from thbroad line is associated with the satellite transitions broadene
measurements of the decay rate of the quadrupole alignmbwntthe first-order quadrupolar interactions. The FWHH of the
echo. In addition to slow motion, the spin—lattice relaxatiooentral peak is (3.6= 0.1) kHz at 4.7 T and (6.3 0.2) kHz

d)9o4T
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3b shows the spin alignment echo height versuscaled by the
observing temperature at 9.4 T and at 300, 425, 525, and 600 |
In these measurements,= 15 us is used to ensure that only the

pure quadrupolar order is created. Figure 3b shows that the dec
T = 35us T =20us rate of the spin alignment echo of quadrupolar ordem{gy
' ! below 525 K is also proportional to the temperature. In contrast t
1/T;, the increase of Tfe is much faster than a linear temperature
dependence above 550 K, indicating the onset of slow atom
T, =70us T, = 50us motion. This demonstrates that the created pure quadrupolar orc
provides a sensitive probe to the slow atomic motion near th
. - 1o0us kﬂ; glass transition temperature in the metallic glass.
I
CONCLUSIONS
T = 150us T = 100us
! 1 We have presented a general method to calculate the sg
1 1 ]

e e alignment echo of quadrupolar nuclei under the Jeener-Broeka
0 100 200 300 400 5000 100 200 300 400 500 sequence and in the presence of the distribution of both th
¢ (us) £ (us) first-order quadrupolar interactions and Zeeman interactions. Tt

FIG. 2. (a) The®Be spin alignment echoes observed at 4.7 T with the@Xplicit formulas forl = 1, g, g, 3, %, aﬂdg are given in the

dephasing timer, at 15, 35, 70, 100, and 15@s. (b) The spin alignment Appendix. The’Be NMR measurement in the investigated me-
echoes observed at 9.4 T with the dephasing timat 6, 20, 50, 75, and
100 ps.

intenisty (a.u.)

at 9.4 T, as shown in Figs. 1c and 1d. The former is roughly
half of the latter, suggesting that the broadening of the central
peak is mainly due to the distribution of Zeeman interactions. —e—300K
The °Be spin-spin relaxation timd¥), which is about 1.5 ms,

is independent of the temperature within the entire investigated
temperature range.

Figures 2a and 2b show the spin alignment echoes obtained
by the Jeener-Broekaert sequence at 4.7 and 9.4 T, respec-
tively. The slow-dephasing component of the echo corresponds
to the central transition and the fast-dephasing component of
the echo corresponds to the satellite transitions. Tpsn-

T

0.01 b | RIS AR A | |

creases, the intensity of the central transition increases while 0 1000 2000 3000 4000 5000 6000
tT (s K)

the intensity of the satellite transitions decreases, as shown in

Fig. 2. This is in good agreement with Eq. [11]. The central

transition is fully developed as, is increased to about 1Q0s

at 4.7 T and to about 5@s at 9.4 T. To be quantitative, we use

the measurements at 9.4 Tesla as an example. The echo height

associated with the satellite transitionsrat= 6 us is referred

to as one. The total echo heightrgt= 100 us is 1.2. The echo

height associated with the satellite transitions,at 100 us is

0.7 and the echo height associated with the central transition at

7, = 100 pus is 0.5. These values agree very well with the

theoretical calculations given by Eq. [11]. Figure 2 shows that

it is possible to create pure quadrupolar order using the con-

dition of (6a) ' = 7, < (88) % oploee v 1o 1 1NGO L
The °Be spin-lattice relaxation time() is abou 3 s atroom 0 200 4001 T (36?8 8001000

temperature; it is inversely proportional to the observing temper- ?

ature over the entire temperature range, as shown in Fig. 3a, wheféG. 3. (a) The saturation recovery curves (at 9.4 T) of magnetization

the saturation recovery of the nuclear magnetizatiorr) Ni M*(7) versus the recovery time which is scaled by the observation temper-

lotted th — | tt ature at 300, 475, and 600 K, amd(7) is defined asv*(7) = [M(®) —
plotte versus- e recovery U or severa measurem.en em'M(q-)]/[M(OC) — M(0)]. (b) The normalized height of the spin alignment echoes
peratures. This temperature dependencd ofgrees with the yersus the decay tims, which is scaled by the observing temperature at 300,

Korringa relaxation mechanism of electronic origit) §. Figure 425, 525, and 600 K and at 9.4 T.

M©®
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tallic glass sample is in good agreement with the theoreticBherefore, the solution a8%’(y) can be expressed as
calculations fot = g It is demonstrated that the pure quadrupolar

order can be created by choosing the dephasing-tjrsach that @-112 @-1/2
the dephasing caused by the first-order quadrupolar interactions i@_;(p(y) =1L 3 Ancog2ny) 1. > Bysin2ny) [A7]
fully developed, while the dephasing caused by the Zeeman ~ o I

interactions is negligible. The created quadrupolar ordePBer
nuclei is proved to be a sensitive probe for slow atomic motio

. . . . -i s
in the investigated metallic glass system. for a half integer and a

APPENDIX -1
- . ) . G(:”(V) =1 E {Cams1€04(2n+1)y]
A general method for derivin§(6, «7) defined in Eq. [5] is 0

described in this Appendix. As mentioned earlier, the key to

solving this problem is to sov&?(y) = exp(iyI2)l .expiyl2)  Danasini(2n + Dy ]} [A8]
for nuclei with spin quantum numbér
The identity for an integen. The coefficientsA,,,, By, Cons1r @NMD o1,
which are operators independent wfcan be determined by
exp(iyld)l. = l.exp[—iy(l,+ 1)?], [A1] the initial conditions ¢"/9y")GP(0) = (—i)".(1 = 21,)" The

final solution of Eq. [A5] for a half-integer is
which can be verified easily, provides a clue for solv@§(y)

; H H (1 —
with an _arbltraryl. From_ Eq. [A1] it follows thatGY/(y) = GY(y) =[1 cos 2y cos 4y - - - cog2l — 1)y]
I.exp[—iy(l £ 21)]. This shows that the problem can be _
formulated in the form of a linear differential equation. This 1 1 1 - 1 o
can be seen clearly from the identity 0o 2 4 ... 2A-17?
x| 0 2 4 ... (2a-1°
LEDIL=A =] (L= (=1 + 2], = (=1 + 1)] L L ;
0 2t g1 ... @ - 1)2|—1
x [l,=(=1)]=0, [A2] -
I
which is identical to I.(1+2,)?
x| 1@ =2,
I, =D,z =] - [l,=(=1+2)] :
21-1
[+ (=1 +1)]=0. [A3] -1 =2)
—i[sin2ysin4y - - - sif2l — 1)vy]
Since r 1
2 4 .- (2A-12
3 3 _ 3
0" _ «| 2 4 @z
S GU(y) = (=) (1= 21)" ; S ;
ay 222 gh2 (g —1)22
x exd —iy(1=20,)], [A4] | @+1)
. , . lL(1+1,)3
Egs. [A3] and [A4] show that the differential equation of % ) [A9]
operators e +1| -2
g . 9
oL@ =D i@ =3) and the final solution of Eq. [A5] for an integéris
ay ay
J
[87 e - 1)]69(7) =0 [A5] GY(y) = [cosy cos 3y cos 5y - - - cos2l — 1)y]
1 1 1 - 1 -1
is valid. The eigenvalues of the characteristic equation for this 1 3 52 ... (21 —1)?
linear differential equation are x| 1 3 54 ... (21-1°

—(21 = i, —(21 = 3)i, ..., (21 = 3)i, (21 — 1)i. [A6] i g (2l —:1)2'*2
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TABLE 2
Irreducible Tensors T, , Expressed in Terms of 1, 1_, and I,
k Than
1
1 Iﬁc‘l”l1
1.
2 *5C DIl +141,]
1 /3 o1 |
- |—cWh 2 _ N 2_q2_Z
3 *2110C" [<5|Z 2 2>I1+I1<5Iz 12 2)]
14 i2 4 1 ?+1
4 :\’Tcw{[ﬁ—?’%l ]I +1 [P 3%|}}
/105 2|2 -2i2+3 22 2t -2i7+3
— ) 4 _ — 2
: . 5{[ S SE T P PP |
o 10|2 5| - 101 + 12 , 10°-5  5*—107+12
6 cd 3 o |le+ 1| 1E——— 2+ 3 I,
\600 30|2 451 — 1502 + 182|2 5(41° — 261* + 54i2 + 45) |
! :t 143 a 858 :
, 307-35 4 — 15012 + 182 _ 5(41° — 26l* + 54 + 45
M i T 143 858
_ 715 N 7|‘2—14I5 7T4—35i2+49|3 35?67315‘4+854T?+372| |
8 g STkt 13 2 715 |l
, T?—14 71" -352+49 . 35° - 315* + 854% + 372
S e s 5 [ 15 I,
_3\2431_ ([, 28°-84  27*—49”+84 , 71°-336*+1176”+32 , 141° - 254° + 1414* — 1302* + 2205
o T ST R 17 I~ 221 I+ 4862 =
, 282-84 27 —49?+84  71°— 336"+ 11762+ 32 , 141° — 254° + 1414* — 13032 + 2205
S AT 17 I - 221 I+ 4862
' l. T..; given in Table 2. Thus, the explicit expressionsa¥(y)
(1% 21,)? in terms of the spherical irreducible tensors can be obtained fc
- 35
w| 1.1 =21, =153 3,1 35 2 as below:
' 21-2
L1=(1=21) GY(3ar) = T 2 coq3ar)Tyey + 2i sinBam) T,y [ALL]
—i[siny sin 3y sin 5y - - - sif2l — 1)y] 5
1 3 5 ... ?-1 -1 G¥2(3ar) = F { \E[Z + 3 cog6a7)]T,
1 3® 5 ... (20-1)3
x| 1 3 5 ... (21-1)p 3
D : : : +24g[—1+ codbar) T,
i 32i—1 52i—1 L (2| _'1)2|—1
L1+ 21) + /6 sin6ar)T,., [A12]
+ - z
=1 = 21,7 G¥2(3ar) = T |~ [9+ 16 cos6 10 co$12a7)]T
% |t(1 + 2'2)5 . [AlO] + ( T) = + E[ + C0$ OZ’T) + CO$ T)] 1+1
: 2-1 1
[1-(1£21,) + ——[—6 — 4 cog6ar) + 10 co$1207)[T;.4

15
It is straightforward to obtain the explicit expressions of

: . 10
GU(y) with Egs. [A9] and [A10]. Using Table 3,.(1 + 21,)" + \F [3 — 4 cog6ar) + cos{lZaT)]Tsﬂ}
can be expressed in terms of the spherical irreducible tensors 21
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TABLE 3

(=)™ .(1 = 21,)" Expressed in Terms of Irreducible Tensors T, ;

n (1) (1 = 21)"
6
1 32:(2I T2*1
8.3 2
2 {152)“>T3+1 z:(l) (3 4| )T1+1}
4.5 /6
3 ci;” - 21\C‘” (A7 - 122) T,y
16./3 16,3 2 A .
4 :{%;Tsﬂ 58“ (9 — 41T, + 35\0(”(51— 104IZ+48I“)T1:1}
16./42 \5 \6 -
5 3c Tet T 11c“>(52° 160°) T + & (|)(261 2802 + 801*)T,.;
128./14 30 . 2.3 . . .
6 :{ 7c\<T Tyar — 15 (848— 1973%)T,., + 4975\5) (7212— 49602 + 960*) — 105& (783 18842 + 1360 — 32(]5)T111}T311
3
96 4 5 .
7 c\”[ Touy — ;_)/;) (2576 — 4482)Te., + \:g“)(ggogz 481602 + 6720%)T,., — \F 1 (3543— 45087 + 2000 — 320°)T,;
3 _[2564/10 V14 \80 - -
1 ey Tour — 17c(|)(14848 20462 T,y + 65CD - (93408~ 340482 + 3584*)Ts..,
\/g 52 A4 36 \/E 32 14 36 18
~ 62aE] (2491872 20670722 + 627200* — 71680°)T,., + 167&(1”(10629— 276962 + 24034 — 8960° + 12808)T,.,
2o . . 2 .
+i 2 [4 sin6at) + 5 sin12a7) [T, — 6 siN12a7)] T4y + 1—1[10 sin3ar)
5 _ . ) . .
-2 7[2 sin6at) — sin(1207) T4y — 5 sinQart) + sin(12a7)] Te+1; [Al4]
1
(712 D P
[A13] G/?(Bar) = F {\/ﬁ [8 + 15 cog6aT) + 12 co$12aT)
2 2
G¥(Bar) = * { \ﬁ[G cog3ar) + 5 cog9ar) +7 co$18ar)| Tyaq — \/;1[4 + 5 cog6ar)

+3 cog15a7)] T4
1
- ﬁ [30 co$3aT) — 39 cog9ar)
+ 9 cog15a7)] Ts:1
10
+ \/7 [2 cog3aT) — 3 cog9arT)

+coq15a7)] T5+1}

+i {80 /—4[320 si3arT)

— 75 sin9at) + 926 sif12a7)] Ty

10 ,
— |77 L6 sinBar) + 8 sin9ar)

—2co0g12a7) — 7 cog18at)] Ts+1

1
13

— 80 co%12a7t) + 35 c0%18a7)] Tssy

[40 + 5 cog6arT)

7
— m[ZO — 30 cog6arT)

+ 12 cog12a7) — 2 c05{18a7)]T7+1}

+ I{\lﬁ [5 sin(6ar) + 8 sin(12arT)

10
+ 7 sin(18aT7)] Tyeq — \/; [9 sin6aT)

+ 6 si12a7) — 7 sin(18a7)]Tyrq
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TABLE 4
Reduced Wigner Rotation Elements d$2,(0)
k Iil(e)
1
1 =5 sin 6
2
3
2
+ \@ in 20
3
3 tTr in6(5cog0 — 1)
\%
4 N2
16 sin20(1+ 7 cos @)
30
5 t%sm 0(15+ 28 cos B + 21 cos 4)
/zﬁ
6 +Y""5in 20(19+ 12 cos @ + 33 cos 4)
256
J14
7 * msm 0(350+ 675 cos @ + 594 cos 4 + 429 cos B)
3.2
8 + msm 20(178+ 869 cos @ + 286 cos4 + 715 cos @)
3,10
9 + 327685 0(2205+ 4312 cos 2 + 4004 cos 4 + 3432 cos 6 + 2431 cos 8)

Note.The reduced Wigner rotation elementskof 1, 2, 3 are given in Refl(7). The other elements &= 4, 5, 6, 7, 8, 9 are obtained by using the formula
given in Ref. (9).

+ \/Z [5 sin6at) — 4 sin12aT) + i{\/EM sin6ar) + 7 sin(12at)
n sin(lsm)]Teﬂ} (AL5] + 85sin18ar) + 6 sin24a7) [T,

1
1 B . .
GY?(3ar) = F { Tog [25°+ 48 cogbar) + 42 cogl2ur) 143136 sirGar) + 42 si12a7)
V
+ 32 CO$180[’T) + 18 CO$24(X’T)]T1i1 +8 SIr(lSOH') — 36 Slr(24OLT)]T4t1

14
1 . .
- \7 7ﬁls[SO%— 76 cog6at) + 14 cog12xt) * \s5 [8 sin(6a7) + 2 sin(12ar)

— 56 co¢18ar) — 84 co$24ar)|Ts., — 8 sin(18a7) + 3 sin(24a1)]Te.,

2
[2 | . o
+ 113 [5+ 4 cos6ar) — 7 cog12ar) 175 [84 sir(6art) — 84 sin12a7)
~ 8.co318a7) + 6 c082407) [Ty + 36 sin18ar) — sin(24om-)]T8+1} .
14
~\7203 [50 12 cog6art) [A16]

- +
96 cogl2ar) + 76 cogléar) Under the rotatiorR = exp(-ifl,), T,., is converted into

2 k 0521 (0) Ty, Whered2,(6) are the reduced Wigner
— 18 co24an)[Trs + 5437 rotatlon matrix elements listed in Table 4 for= 0 andk = 1,
., 9. Thediagonal part ofRT,.,R™* is d§2,(6)T,o. Ac-
X [105— 168 cogbar) + 84 cogl2at) cording to the definition of the functiof(6, a7) (Eq. [5]), the
diagonal part ofR{GY + GV}R™ is Souq fil, 1) Tyo and
— 24 co$18at) + 3co:{24a7)]T9+1} the diagonal part of Li2R{GY — GVIR™* is Sqyen fu(6:
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aT1)To Therefore, using Table 4 and Eqgs. [A11]-[A16], it is 6

straightforward to obtai (6, «1) as follows:
For spinl = 1,

f,(6, at) = — |[2 cos &7 sin g,

3
f,(0, at) = \gsin a7 sin 20.

For spinl = 2,

1
f,(0, at) = — NG [2 + 3 cog6aT)]sin 0,
\/

3
f,(0, at) = sm(6a1-)sm 20

3
f4(0, at) = — 25 [-1+ cog6arT)]
N

X sin@(5cogh — 1).

For spinl = 3,

[A17]

[A18]

1
(0, at) = =5 [9 + 16 co%6aT) + 10 co$12a7)]sin O
\

f,(0, at) = % \EM sin(6at) + 5 sin(12a7)]sin 20

1
f3(0, at) = — > [-3 — 2 cog6arT)
v

+ 5 cog12a7)]sin 6(5 cogo — 1)

f4(0, at) = % [—2 sin6aT) + sin(12a7)]
N

X sin20(1 + 7 cos D)

fs(0, at) = > [3 4 cog6at) + cog12a7)]

64,7

X sinf[15+ 28 cos D + 21 cos B ].

For spinl = 3,

1
f,(0, at) = — N [6 cog3aT) + 5 cog9arT)
\/

+ 3 cog15a7)]sin 6

[A19]

1 3
f,(0, at) = 320 \ﬁ[SZO si3at) — 75 sin9art)

+ 926 sir(15a7)]sin 20

/6
f3(0, at) = \? [30 co$3aT) — 39 co%9arT)
+ 9 cog15a)]sin 6(5 cogh — 1)

5
f,(0, at) = 4 154 —7—[3 sin(8ar) + 4 sin(9ar)

— 3 sin(15aT)]sin 26(1 + 7 cos @)

fs(0, at) = \[[2 cog3aT)

— 3 cog9ar) + cog15aT)]
X sin6[15+ 28 cos D + 21 cos 4]

fs(0, at) = 128 \/7[10 sin3aT)

— 5 sinQar) + sin(15a7)]
X sin20(19+ 12 cos @ + 33 cos 4).
[A20]

inl =7
For spinl = 3,

1
f,(0, at) = — T [8 + 15 cog6aT) + 12 cogl2aT)
N

+ 7 cog18a7)]sin 6
f,(0, at) = \/i [5 sin(6aT) + 8 si(12aT)

+ 7 sin(18aT)]sin 260

1 /3
f2(0, at) = 5 \/; [4 + 5 cog6at) — 2 cog12aT)

— 7 cog18ar)]sin 6(5cog — 1)

5
f,(0, at) = — m[g sin(6at) + 6 sin(12a7)
N

— 7 sin(18a7)]sin 26(1 + 7 cosd)

fs(0, at) = 1664 \/7 [40 + 5 cog6arT)
— 80 co$12at) + 35 co$18aT)]

X sinf[15+ 28 cos D + 21 cos 4]

7 6 ]
fs(0, at) = 256 \/; [5 sin6aT)

— 4 sin(12a7t) + sin(18a7)]
X sin20(19+ 12 cos D + 33 cos 4)

f2(0, at) = [10 — 15 cog6aT)

512,858



inl =2
For spinl = 2,

f.(0, at) =

f5(0, at) =

f3(0, at) =

400, at) =

(0, at) =

fo(0, at) =

f2(0, at) =

fg(0, at) =
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+ 6 cog12a7) — cog18aT)]
X sin 0(350+ 675 cos @
+ 594 cos 4 + 429 cos @). [A21]

1
— —=[25+ 48 cos6
\]3730[ $ aT)
+ 42 co%12a7) + 32 co$18aT)

+ 18 co$24aT)]sin 6

1 /3
> \/; [4 sin6aT) + 7 si12aT)
+ 8 sin18a) + 6 sin24ar)]sin 20

1 /3
5 m[25+ 38 C0$6a7)

+ 7 cog12a1) — 28 co%18arT)
— 42 co$24ar)]sin 6(5 cog6 — 1)

1 /5 ) .
- é m[lS Slr(GOLT) +21 Slr(lzaT)

+ 4 sin(18a7t) — 18 sin24ar7)]
X sin 20(1 + 7 cos D)

1 ]15
~ 64 \/; [5 + 4 cog6ar) — 7 cog12aT)

— 8 cog18a7) + 6 cod24aT)]
X sin 0[15+ 28 cos @ + 21 cos 4]

7 3 _ .
178 \/; [8 siNbat) + 2 sin(12aT)

— 8 sin(18a7)) + 3 sin(24a71)]
X sin20(19+ 12 cos D + 33 cos 4)

——_[25— 6 cog6
512,7203" 46ar)

— 48 co$12a7) + 38 co$18aT)
— 9 co424aT)]sin 6(350+ 675 cos B
+ 594 cos 4 + 429 cos ©)

—~___[84sin6
204817554 Si6a7)

— 84 sin12a7) + 36 si18arT)
— sin(24aT)]sin 260(178+ 869 cos @
+ 286 cos 4 + 715 cos ©)

f 3 5
o0, a1) = = 7638412431

X [105— 168 co$6a7) + 84 cogl2arT)
— 24 co%18a7) + 3 cog24aT)]
X sin0(2205+ 4312 cos 2 + 4004

X cos 40 + 3432 cos & + 2431 cos8).
[A22]
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