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It is demonstrated that the alignment echo of 9Be is quite
useful for detecting ultraslow atomic motions in the metallic
glass Zr46.75Ti8.25Cu7.5Ni10Be27.5. The time scale of detectable
atomic motion is between T2 5 1.5 ms and T1 of a few seconds.
Similar to previous works of 2H NMR, the Jeener–Broekaert
sequence is used to create quadrupolar order for spin-3

2
nuclei

upon nonselective excitations. Since the chemical and Knight
shift distributions are not negligible for 9Be, the proper choice
of the dephasing time between the first and the second pulses is
essential for achieving pure quadrupolar order. It is demon-
strated experimentally that slow atomic motions contribute
significantly to the decay of the alignment echo near the glass
transition temperature. © 1998 Academic Press

Key Words: alignment echo; quadrupolar order; 9Be; ultraslow
motion; metallic glass.

INTRODUCTION

Recently, significant progress has been made in the devel-
opment of metallic glasses. For instance, it was discovered that
the metallic alloy Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Zr–Ti–Cu–Ni–
Be) exhibits extraordinary glass formability as well as high
resistance to crystallization in the supercooled liquid state (1).
The study of slow atomic motion in metallic glasses is crucial
for the understanding of the nature of glass transition as well as
the thermal stability of metallic glasses. NMR has been used in
the study of glass transition in polymers (2). It has distinct
advantages in the study of atomic motion, such as the wide
range of accessible time scale and the microscopic nature of the
technique. In particular, various NMR techniques have been
used to detect ultraslow atomic motion, including the tech-
niques of dipolar order relaxation (3), 2H alignment echo (4),
the stimulated echo (5, 6), and two-dimensional chemical ex-
change (2). However, since the time scale of atomic motion
near the glass transition temperatureTg is expected to be on the
order of a second, NMR study of glass transition in metallic
glasses is potentially hampered by the typical short spin–lattice
relaxation timeT1 in metallic systems.

In this study we report the ideal features of9Be (spin-3
2
) for

studying slow atomic motions in metallic systems using the
alignment echo technique. First,T1 of 9Be is very long, typi-
cally on the order of seconds (7, 8). Second, the quadrupole
interaction is usually small enough (7, 9, 10) to allow nonse-
lective excitations of both the central (1

2
721

2
) and the satellite

(61
2
7 63

2
) transitions by RF pulses. This permits the creation

of quadrupolar order using the Jeener–Broekaert sequence
(4, 11). Unlike 2H, the Knight shift and the chemical shift
distributions of9Be are not negligible. To achieve pure qua-
drupolar order, effects of such distributions need to be mini-
mized. In the previous multiple-quantum filtration experiments
in liquid-type environments, a 180° pulse is applied in the
middle between the first and the second pulses to eliminate the
effect of Zeeman interaction distribution (12–14). However,
this method is limited by the inhomogeneity of the RF field
throughout the sample (15); this is particularly true in metallic
systems where the skin depth is very small. In this work, it is
demonstrated that a proper time intervalt1 between the first
and the second pulses can be chosen conveniently for9Be to
achieve pure quadrupolar order. The resulting alignment echo
following the third pulse is shown to be sensitive to slow
atomic motion activated nearTg.

BASIC THEORY

Assume that the truncated Hamiltonian in the rotating frame
consists of the first-order quadrupole interaction and the Zee-
man interaction given by

* 5 a ~3I z
2 2 Î 2! 1 bI z, [1]

whereÎ25I x
21I y

21I z
2, a is proportional to the nuclear quadru-

pole constant, andb is the frequency offset with respect to the
RF frequency. Consider the evolution of the spin system under
the Jeener–Broekaert sequence (11)

908y–t1–u9f9–t2–u 0f0–t [2]

with RF pulses being nonselective. In the current discussion,t2

is chosen to be larger than the dipole–dipole relaxation timeT2

andt1 , T2. u9 andu0 are the flipping angles of the second and
the third pulses, respectively;f9 andf0 are the phases of the
second and the third pulses, respectively, with respect to the
first pulse. Without losing generality, we assume that the first
pulse is a 90° pulse along they-axis described by the Hamil-
tonian *rf 5 (p/2)Iy. Since the density operator in thermal
equilibrium can be considered asr(0) 5 Iz, the first pulse

JOURNAL OF MAGNETIC RESONANCE133,155–165 (1998)
ARTICLE NO. MN981451

155 1090-7807/98 $25.00
Copyright © 1998 by Academic Press

All rights of reproduction in any form reserved.



simply converts the density operator tor(01) 5 Ix. The density
operator immediately after the second pulse is given by

r~t11! 5 R~u9f9 !exp(2i*t1)Ixexp~i*t1!R21~u9f9 !, [3]

where R(u9f9) 5 exp(2if9Iz)exp(2iu9Iy)exp(if9Iz). Equation
[3] can be written in the form

r ~t11! 5 exp~ 2 if9I z!$cosfeff1Ax~u9, a9t1!

2 sin feff1Ay~u9, a9t1!%exp~if9I z! , [4a]

where

Ax~u, at! ; exp(2iuIy)exp(23iaI z
2t)Ixexp~3iaI z

2t!exp~iuIy!

[4b]

and

Ay~u, at! ; exp(2iuIy)exp(23iaI z
2t)Iyexp~3iaI z

2t!exp~iuIy!

[4c]

and feff1 [ f9 2 b9t1. a9 and b9 are the values ofa and b,
respectively, during the time periodt1. Sincet2 is assumed to be
longer thanT2, only the diagonal part ofr(t11), rdiag (which
commutes withIz), persists at the end of the time intervalt2. rdiag

can be expressed as a linear combination of zeroth-order irreduc-
ible tensorsTk0 (Table 1) withk 5 1, . . ., 2I. SinceAx(u, at)
changes sign upon 180° rotation around they-axis, its diagonal
part,Ax

diag(u, at), can only contain terms with odd ranks ofTk0. In
contrast, sinceAy(u, at) remains identical upon 180° rotation
around they-axis, its diagonal part,Ay

diag(u, at), can only contain
terms with even ranks ofTk0. Thus,rdiag can be expressed as

TABLE 1
Irreducible Tensors Tk0 Expressed in Terms of Iz

T00 5 C0
~I !

T10 5 C1
~I !I z

T20 5
1

Î6
C2

~I ! ~3Î 2 2 Î 2!

T30 5
1

Î10
C3

~I ! @5I z
3 2 ~3Î 2 2 1!I z#

T40 5
1

2 Î35

2
C4

~I !F I z
4 2

6Î 2 2 5

7
I z

2 1
3~ Î 4 2 2Î 2!

35 G
T50 5

3

2 Î7

2
C5

~I !F I z
5 2

5~2Î 2 2 3!

9
I z

3 1
15Î 4 2 50Î 2 1 12

63
I zG

T60 5
Î231

4
C6

~I !F I z
6 2

15Î 2 2 35

11
I z

4 1
5Î 4 2 25Î 2 1 14

11
I z

2 2
5Î 6 2 40Î 4 1 60Î 2

231 G
T70 5

Î429

4
C7

~I !F I z
7 2

21Î 2 2 70

13
I z

5 1
7~15Î 4 2 105Î 2 1 101!

143
I z

3 2
35Î 6 2 385Î 4 1 882Î 2 2 180

429
I zG

T80 5
3

8 Î715

2
C8

~I !F I z
8 2

28Î 2 2 126

15
I z

6 1
7~6Î 4 2 56Î 2 1 81!

39
I z

4

2
2~210Î 6 2 3045Î 4 1 9898Î 2 2 4566!

2145
I z

2 1
7~ Î 8 2 20Î 6 1 108Î 4 2 144Î 2!

1287 G
T90 5

1

8 Î12155

2
C9

~I !F I z
9 2

36Î 2 2 210

17
I z

7 1
21~6Î 4 2 72Î 2 1 145!

85
I z

5

2
2~42Î 6 2 777Î 4 1 3402Î 2 2 2630!

221
I z

3 1
3~105Î 8 2 2660Î 6 1 18844Î 4 2 36528Î 2 1 6720!

12155
I zG

Ck
~I ! 5

1

k! Î2k~2k 1 1!~2k !! ~2I 2 k !!

~2I 1 k 1 1!!

Note.The definition of the irreducible tensor operators is based on the convention adopted in Refs. (17–19) with the normalization condition Tr{Tkq
† Tk9q9} 5 dkk9dqq9.
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rdiag 5 cosfeff1Ax
diag~u9, a9t1! 2 sin feff1Ay

diag~u9, a9t1!

5 cosfeff1 O
oddk

fk~u9, a9t1!Tk0 2 sinfeff1 O
evenk

fk~u9, a9t1!Tk0,

[5]

wherek 5 1, . . . , 2I andfk(u9, a9t1) are functions ofu9 andt1.
The main step in obtaining an explicit expression for Eq. [4]
consists in working out the expressionG6

(I)(a) [ exp(2iaIz
2)

I6exp(iaIz
2) (I6 5 Ix 6 iI y), which can be carried out (although

quite tedious for largeI) using the exponential expansion
method (16). An alternative method for derivingG6

(I)(a), and
thus the explicit expression offk(u, t), is given in the Appen-
dix. The first term of Eq. [5] originates from the Zeeman,
octupolar orders, etc.; it contributes to both the satellite and
central transitions upon the application of the third pulse. The
second term of Eq. [5] originates from the quadrupolar, hexa-
decapolar orders, etc.; it can be verified easily that the |1

2
&^21

2
|

quantum coherence cannot be created by the third pulse from
this term. Thus, the intensity of the central transition in the
alignment echo is a direct measure of the presence of the
Zeeman order.

The expression of the signal appearing after the third pulse
is given by

S~t! 5 Tr{exp(23ia0I z
2t)exp(2ib0Izt)exp(2if0Iz)

3 exp(2iu0Iy)exp~if0Iz!rdiagexp(2if0Iz)

3 exp~iu0Iy!exp~if0Iz!exp~b0Izt!exp~3ia0I z
2t!I1}

5 exp~ifeff2!Tr$rdiagexp~iu0Iy!exp~3ia0I z
2t!I1

3 exp(23ia0I z
2t!exp(2iu0Iy)}

5 2exp~ifeff2!Tr$rdiagexp(2iu0Iy!

3 exp~3ia0I z
2t!I1exp(23ia0I z

2t)exp~iu0Iy!}, [6]

wherefeff2 [ f0 1 b0t, anda0 andb0 are the values ofa andb,
respectively, during the time intervalt. Because of the possibility
of atomic motions during the time periodt2, a0 andb0 could be
different froma9 andb9, respectively. Here, the correlation time
of such atomic motiontc (the mean time the nucleus resides at a
given environment) is assumed to be longer thanT2 and the jump
process itself is considered to be sudden. In the last derivation of
Eq. [6], exp(2ipIz)exp(6iu0Iy)exp(ipIz) 5 exp(7iu0Iy) has been
used. According to Eqs. [4b] and [4c], Eq. [6] can also be written
as

S~t ! 5 2exp~ifeff2!Tr$rdiag@Ax~u0, 2a0t !

1 iAy~u0, 2a0t !#% . [7]

Sincerdiag commutes withIz, only the diagonal parts ofAx(u0,
2a0t) andAy(u0, 2a0t) contribute to the trace in Eq. [7]. Using
the fact that Tr{Tk0Tk90} 5 dkk9 (17) and Eq. [5], the signalS(t)
can be expressed in the simple form

S~t ! 5 2cosfeff1exp~ifeff2!

3 O
oddk

fk ~u9, a9t1! fk~u0, 2a0t !

1 i sin feff1exp~ifeff2!

3 O
evenk

fk ~u9, a9t1! fk~u0, 2a0t ! . [8]

In principle, the first term of Eq. [8] can be eliminated by
settingfeff1 5 690°. However, this cannot be implemented by
choosing the phasef9 if there is a significantb distributiondb.
A straightforward method to eliminate this first term, and thus
to eliminate the central transition, is to chooset1 ! (db)21 and
f9 5 690°. Under this condition,at1 $ 1 has to be satisfied
to make the second term non-negligible, as can be seen from
Eq. [4]. For a system with bothdb anda distributionda, such
a choice oft1 can be made ifdb ! da, which is quite common
for quadrupolar nuclei. This method of eliminating the central
transition works also if the other interactions, represented by
the Hamiltonian*9, are present such as the second-order
quadrupole interaction and the dipolar interactions; in this case,
(da)21 # t1 ! (d|*9|)21 has to be satisfied.

For I 5 3
2
, fk(u, at) is given by (see Appendix)

f1~u, at ! 5 2
1

Î5
sin u @2 1 3 cos~6at !# ;

f2~u, at ! 5
3

2
sin~2u !sin~6at ! ;

f3~u, at ! 5
3

2Î5
sin u @5 cos2u 2 1#@1 2 cos~6at !# . [9]

Therefore, the explicit expression of the signal can be ob-
tained as

S~t ! 5 2
9

4
i sin~f9 2 b9t1!ei ~f01b0t!sin~2u9 !

3 sin~2u0 !sin~6a9t1!sin~6a0t !

2
1

4
cos~f9 2 b9t1!ei ~f01b0t!sin u9 sin u0

3 $~5 2 9 cos2u9 2 9 cos2u0

1 45 cos2u9 cos2u0 ) 1 ~3 1 9 cos2u9

1 9 cos2u0 2 45 cos2u9 cos2u0 )

3 cos~6a9t1! 1 ~3 1 9 cos2u9

1 9 cos2u0 2 45 cos2u9 cos2u0 )

3 cos~6a0t ! 1 ~9 2 9 cos2u9

2 9 cos2u0 1 45 cos2u9 cos2u0 )

3 cos~6a9t1!cos~6a0t !} . [10]
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Assuming no slow motion occurs during the time periodt2,
thena0 5 a9 andb0 5 b9 and Eq. [10] contains terms which
form an echo att 5 t1. The signal of the echo can be derived
easily from Eq. [10] and is given by

Secho~t! 5
9

8
Cevensin~2u9!sin~2u0!cos@6a9~t1 2 t!#

1
1

4
Coddsinu9sinu0H~5 2 9 cos2u9

2 9 cos2u0 1 45 cos2u9cos2u0!

1
1

2
~9 2 9 cos2u9 2 9 cos2u0

1 45 cos2u9cos2u0!cos@6a9~t1 2 t!#J, [11]

whereCeven 5 21
2
{ei [f91f02b9(t12t)] 2 ei [2f91f01b9(t11t)] } and

Codd 5 21
2
{ei [f91f02b9(t12t)] 1 ei [2f91f01b9(t11t)] }. At dbt1 !

1, Ceven5 2i sin f9eif0 andCodd 5 2cosf9eif0. Consider the
case off9 5 90° whereCeven5 2ieif0 andCodd 5 0; thus, the
intensity of the echo associated with the central transition is zero.
As t1 increases,Ceven decreases in magnitude whileCodd in-
creases in magnitude because of the effect of dephasing caused by
the distribution ofb (e.g., the powder pattern effect). In the limit
of dbt1 @ 1, the effect of dephasing leads toCeven 5 Codd 5
21

2
ei [f91f02b9(t12t)] . For u9 5 u0 5 45°, the echo height associ-

ated with the satellite transition is 0.8125 atdbt1 @ 1 (normalized
by the echo height atdbt1 ! 1); the echo height associated with
the central transition is 0.4028 atdbt1 @ 1.

It is clear from Eq. [5] that pure Zeeman order cannot be
created forI 5 3

2
nuclei by choosingb9t1 ! 1 andf9 5 0°;

both the Zeeman order and the octupolar order will be created
under this condition. In contrast, pure quadrupolar order is
created forrdiagunder the condition ofb9t1 ! 1 andf9 5 90°.
In this case, the signalSecho(t) is proportional to the single
particle correlation function̂sin(6a(0)t1)sin(6a(t2)t)& in the
presence of slow atomic motion. The treatment of such a single
particle correlation function as a result of motion has been
discussed extensively (4, 5). In metallic glasses, the slow mo-
tion is due to random translational jumps of atoms. It is
reasonable to assume that the electric field gradient at one
nuclear site after a jump is independent of that before the jump.
Furthermore, the number of possible electric field gradients at
one nuclear site is large. With such a random atomic diffusion
mechanism, the decay of the alignment echo can be simply
described as

Secho~t ! } exp(2Vt2) , [12]

whereV is the jump rate of atoms. Therefore, the time scale of
the slow atomic motion can be directly obtained from the
measurements of the decay rate of the quadrupole alignment
echo. In addition to slow motion, the spin–lattice relaxation

process also contributes to the decay of the spin alignment echo
by destroying the quadrupolar order. The contribution of the
spin–lattice relaxation process to pure quadrupolar order decay
is much simpler than that to a mixture of Zeeman and octupolar
orders and can be taken into account easily.

EXPERIMENTAL

9Be NMR is used to study the slow atomic motion in the
metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5 with the glass tran-
sition temperatureTg 5 596 K (1). A home-built high temper-
ature probe was used to conduct NMR experiments on a
Chemagnetics CMX spectrometer at both 4.7 and 9.4 T. The
90° pulse employed is about 3 to 4ms, which ensures the
nonselective excitations of both the central and the satellite
transitions.

Figure 1 shows the9Be spectra at 4.7 and 9.4 T at room
temperature. The spectra were obtained by using the quadru-
pole echo pulse sequence. There is no obvious change of the
spectra in the entire temperature range of current investigation.
The spectra consist of two components. The full-width at
half-height (FWHH) of the broad line is about (1006 10) kHz
at both 4.7 and 9.4 T, as shown in Figs. 1a and 1b, respectively.
Such field independence of the linewidth suggests that the
broad line is associated with the satellite transitions broadened
by the first-order quadrupolar interactions. The FWHH of the
central peak is (3.66 0.1) kHz at 4.7 T and (6.16 0.2) kHz

FIG. 1. (a) The satellite transition line of the9Be spectrum at 4.7 T and (b)
9.4 T. (c) The central transition peak of the9Be spectrum at 4.7 T and (d)
9.4 T.
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at 9.4 T, as shown in Figs. 1c and 1d. The former is roughly
half of the latter, suggesting that the broadening of the central
peak is mainly due to the distribution of Zeeman interactions.
The9Be spin–spin relaxation time (T2), which is about 1.5 ms,
is independent of the temperature within the entire investigated
temperature range.

Figures 2a and 2b show the spin alignment echoes obtained
by the Jeener–Broekaert sequence at 4.7 and 9.4 T, respec-
tively. The slow-dephasing component of the echo corresponds
to the central transition and the fast-dephasing component of
the echo corresponds to the satellite transitions. Ast1 in-
creases, the intensity of the central transition increases while
the intensity of the satellite transitions decreases, as shown in
Fig. 2. This is in good agreement with Eq. [11]. The central
transition is fully developed ast1 is increased to about 100ms
at 4.7 T and to about 50ms at 9.4 T. To be quantitative, we use
the measurements at 9.4 Tesla as an example. The echo height
associated with the satellite transitions att1 5 6 ms is referred
to as one. The total echo height att1 5 100ms is 1.2. The echo
height associated with the satellite transitions att1 5 100ms is
0.7 and the echo height associated with the central transition at
t1 5 100 ms is 0.5. These values agree very well with the
theoretical calculations given by Eq. [11]. Figure 2 shows that
it is possible to create pure quadrupolar order using the con-
dition of (da)21 # t1 ! (db)21.

The 9Be spin–lattice relaxation time (T1) is about 3 s atroom
temperature; it is inversely proportional to the observing temper-
ature over the entire temperature range, as shown in Fig. 3a, where
the saturation recovery of the nuclear magnetization M(t) is
plotted versus the recovery timet for several measurement tem-
peratures. This temperature dependence ofT1 agrees with the
Korringa relaxation mechanism of electronic origin (7, 8). Figure

3b shows the spin alignment echo height versust2 scaled by the
observing temperature at 9.4 T and at 300, 425, 525, and 600 K.
In these measurements,t1 5 15ms is used to ensure that only the
pure quadrupolar order is created. Figure 3b shows that the decay
rate of the spin alignment echo of quadrupolar order (1/TQE)
below 525 K is also proportional to the temperature. In contrast to
1/T1, the increase of 1/TQEis much faster than a linear temperature
dependence above 550 K, indicating the onset of slow atomic
motion. This demonstrates that the created pure quadrupolar order
provides a sensitive probe to the slow atomic motion near the
glass transition temperature in the metallic glass.

CONCLUSIONS

We have presented a general method to calculate the spin
alignment echo of quadrupolar nuclei under the Jeener–Broekaert
sequence and in the presence of the distribution of both the
first-order quadrupolar interactions and Zeeman interactions. The
explicit formulas for I 5 1, 3

2
, 5

2
, 3, 7

2
, and 9

2
are given in the

Appendix. The9Be NMR measurement in the investigated me-

FIG. 3. (a) The saturation recovery curves (at 9.4 T) of magnetization
M*(t) versus the recovery timet, which is scaled by the observation temper-
ature at 300, 475, and 600 K, andM*(t) is defined asM*(t) 5 [M(`) 2
M(t)]/[M(`) 2 M(0)]. (b) The normalized height of the spin alignment echoes
versus the decay timet2, which is scaled by the observing temperature at 300,
425, 525, and 600 K and at 9.4 T.

FIG. 2. (a) The9Be spin alignment echoes observed at 4.7 T with the
dephasing timet1 at 15, 35, 70, 100, and 150ms. (b) The spin alignment
echoes observed at 9.4 T with the dephasing timet1 at 6, 20, 50, 75, and
100 ms.
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tallic glass sample is in good agreement with the theoretical
calculations forI 5 3

2
. It is demonstrated that the pure quadrupolar

order can be created by choosing the dephasing timet1 such that
the dephasing caused by the first-order quadrupolar interactions is
fully developed, while the dephasing caused by the Zeeman
interactions is negligible. The created quadrupolar order for9Be
nuclei is proved to be a sensitive probe for slow atomic motions
in the investigated metallic glass system.

APPENDIX

A general method for derivingfk(u, at) defined in Eq. [5] is
described in this Appendix. As mentioned earlier, the key to
solving this problem is to solveG6

(I)(g) [ exp(2igIz
2)I6exp(igIz

2)
for nuclei with spin quantum numberI.

The identity

exp(2igI z
2)I6 5 I6 exp[2ig ~I z 6 1!2] , [A1]

which can be verified easily, provides a clue for solvingG6
(I)(g)

with an arbitraryI. From Eq. [A1] it follows thatG6
(I)(g) 5

I6exp[2ig(1 6 2Iz)]. This shows that the problem can be
formulated in the form of a linear differential equation. This
can be seen clearly from the identity

~Iz 6 I !@Iz 6 ~I 2 1!# · · ·@Iz 6 ~2I 1 2!#@Iz 6 ~2I 1 1!#

3 @I z 6 ~2I !# 5 0 , [A2]

which is identical to

I6~I z 6 I !@I z 6 ~I 2 1!# · · · @I z 6 ~2I 1 2!#

@I z 6 ~2I 1 1!# 5 0 . [A3]

Since

­n

­gn G6
~I ! ~g! 5 ~2i !nI6~1 6 2I z!

n

3 exp@ 2 ig ~1 6 2I z!# , [A4]

Eqs. [A3] and [A4] show that the differential equation of
operators

F ­

­g
2 i ~2I 2 1!GF ­

­g
2 i ~2I 2 3!G · · ·

F ­

­g
1 i ~2I 2 1!GG6

~I ! ~g! 5 0 [A5]

is valid. The eigenvalues of the characteristic equation for this
linear differential equation are

2~2I 2 1!i , 2~2I 2 3!i , . . . , ~2I 2 3!i , ~2I 2 1!i . @A6#

Therefore, the solution ofG6
(I)(g) can be expressed as

G6
~I ! ~g! 5 I6 O

n50

~2I21!/ 2

A2ncos~2ng! 1 I6 O
n51

~2I21!/ 2

B2nsin~2ng! @A7#

for a half-integerI and as

G6
~I ! ~g! 5 I6 O

n50

I21

$C2n11cos@~2n11!g #

1 D2n11sin@~2n 1 1!g #% [A8]

for an integerI. The coefficientsA2n, B2n, C2n11, andD2n11,
which are operators independent ofg, can be determined by
the initial conditions (­n/­gn)G6

(I )(0) 5 (2i )nI6(1 6 2Iz)
n. The

final solution of Eq. [A5] for a half-integerI is

G6
~I ! ~g! 5 @1 cos 2g cos 4g · · · cos~2I 2 1!g #

3 3
1 1 1 · · · 1
0 22 42 · · · ~2I 2 1!2

0 24 44 · · · ~2I 2 1!4

···
···

···
···

···
0 22I21 42I21 · · · ~2I 2 1!2I21

4
21

3 3
I6

I6~1 6 2Iz!
2

I6~1 6 2Iz!
4

···
I6~1 6 2Iz!

2I21
4

2 i @sin 2g sin 4g · · · sin~2I 2 1!g#

3 3
2 4 · · · ~2I 2 1!
23 43 · · · ~2I 2 1!3

···
···

···
···

22I22 42I22 · · · ~2I 2 1!2I22 4
21

3 3
I6~1 6 Iz!

I6~1 6 Iz!
3

···
I6~1 6 Iz!

2I224 [A9]

and the final solution of Eq. [A5] for an integerI is

G6
~I ! ~g! 5 @cosg cos 3g cos 5g · · · cos~2I 2 1!g #

3 3
1 1 1 · · · 1
1 32 52 · · · ~2I 2 1!2

1 34 54 · · · ~2I 2 1!4

···
···

···
···

···
1 32I22 32I22 · · · ~2I 2 1!2I22

4
21
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3 3
I6

I6~1 6 2I z!
2

I6~1 6 2I z!
4

···
I6~1 6 2I z!

2I22
4

2 i @sin g sin 3g sin 5g · · · sin~2I 2 1!g #

3 3
1 3 5 · · · 2I 2 1
1 33 53 · · · ~2I 2 1!3

1 35 55 · · · ~2I 2 1!5

···
···

···
···

···
1 32I21 52I21 · · · ~2I 2 1!2I21

4
21

3 3
I6~1 6 2I z!

I6~1 6 2I z!
3

I6~1 6 2I z!
5

···
I6~1 6 2I z!

2I21
4 . [A10]

It is straightforward to obtain the explicit expressions of
G6

(I)(g) with Eqs. [A9] and [A10]. Using Table 3,I6(1 6 2Iz)
n

can be expressed in terms of the spherical irreducible tensors

Tk61 given in Table 2. Thus, the explicit expressions ofG6
(I)(g)

in terms of the spherical irreducible tensors can be obtained for
I 5 1, 3

2
, 5

2
, 3, 7

2
, 9

2
as below:

G6
~1! ~3at ! 5 7 2 cos~3at !T161 1 2i sin~3at !T261 [A11]

G6
~3/ 2! ~3at ! 5 7 H Î2

5
@2 1 3 cos~6at !#T161

1 2Î3

5
@21 1 cos~6at !#T361J

1 i Î6 sin~6at !T261 [A12]

G6
~5/2!~3at! 5 7 H 1

Î35
@9 1 16 cos~6at! 1 10 cos~12at!#T161

1
1

Î15
@262 4 cos~6at! 1 10 cos~12at!#T361

1 Î10

21
@3 2 4 cos~6at! 1 cos~12at!#T561J

TABLE 2
Irreducible Tensors Tk61 Expressed in Terms of I1, I2, and Iz

k Tk61

1 7
1

Î2
C1

~I ! I6

2 7
1

2
C2

~I ! @Iz I6 1 I6 Iz#

3 7
1

4 Î 3

10
C3

~I !FS5Iz
2 2 Î2 2

1

2DI6 1 I6S5Iz
2 2 Î2 2

1

2DG
4 7

Î14

4
C4

~I !HFIz
3 2

3Î2 1 1

7
IzGI6 1 I6FIz

3 2
3Î2 1 1

7
IzGJ

5 7
Î105

8
C5

~I !HFIz
4 2

2Î2

3
Iz
2 1

2Î4 2 2Î2 1 3

42 GI6 1 I6FIz
4 2

2Î2

3
Iz
2 1

2Î4 2 2Î2 1 3

42 GJ
6 7

3Î22

8
C6

~I !HFIz
5 2

10Î2 2 5

11
Iz
3 1

5Î4 2 10Î2 1 12

33
IzGI6 1 I6FIz

5 2
10Î2 2 5

11
Iz
3 1

5Î4 2 10Î2 1 12

33
IzGJ

7 7
Î6006

32
C7

~I !HFIz
6 2

30Î2 2 35

26
Iz
4 1

45Î4 2 150Î2 1 182

143
Iz
2 2

5~4Î6 2 26Î4 1 54Î2 1 45!

858 GI6

1I6FIz
6 2

30Î2 2 35

26
Iz
4 1

45Î4 2 150Î2 1 182

143
Iz
2 2

5~4Î6 2 26Î4 1 54Î2 1 45

858 GJ
8 7

Î715

8
C8

~I !HFIz
7 2

7Î2 2 14

5
Iz
5 1

7Î4 2 35Î2 1 49

13
Iz
3 2

35Î6 2 315Î4 1 854Î2 1 372

715
IzGI6

1 I6FIz
7 2

7Î2 2 14

5
Iz
5 1

7Î4 2 35Î2 1 49

13
Iz
3 2

35Î6 2 315Î4 1 854Î2 1 372

715
IzGJ

9 7
3Î2431

32
C9

~I !HFIz
8 2

28Î2 2 84

17
Iz
6 1

2~7Î4 2 49Î2 1 84!

17
Iz
4 2

7Î6 2 336Î4 1 1176Î2 1 32

221
Iz
2 1

14Î8 2 252Î6 1 1414Î4 2 1302Î2 1 2205

4862 GI6

1 I6FIz
8 2

28Î2 2 84

17
Iz
6 1

2~7Î4 2 49Î2 1 84!

17
Iz
4 2

7Î6 2 336Î4 1 1176Î2 1 32

221
Iz
2 1

14Î8 2 252Î6 1 1414Î4 2 1302Î2 1 2205

4862 GJ
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1 i H Î2

7
@4 sin~6at! 1 5 sin~12at!#T261

2 2Î5
7 @2 sin~6at! 2 sin~12at!#T461J

[A13]

G6
~3! ~3at ! 5 7 H Î2

7
@6 cos~3at ! 1 5 cos~9at !

13 cos~15at !]T161

2
1

Î2
@30 cos~3at ! 2 39 cos~9at !

1 9 cos~15at !]T361

1 Î10

7
@2 cos~3at ! 2 3 cos~9at !

1cos~15at !] T561J
1 i H 1

80Î14
@320 sin~3at !

2 75 sin~9at ! 1 926 sin~12at !]T261

2 Î10

77
@6 sin~3at ! 1 8 sin~9at !

2 6 sin~12at !]T461 1 Î 2

11
@10 sin~3at!

2 5 sin~9at ! 1 sin~12at !]T661J [A14]

G6
~7/ 2! ~3at! 5 7 H 1

Î21
@8 1 15 cos~6at! 1 12 cos~12at!

17 cos~18at!]T161 2 Î 2

11
@4 1 5 cos~6at!

22 cos~12at ! 2 7 cos~18at !]T361

1
1

13 Î113

14
@40 1 5 cos~6at !

2 80 cos~12at ! 1 35 cos~18at !]T561

2 Î 7

429
@20 2 30 cos~6at !

1 12 cos~12at ! 2 2 cos~18at !]T761J
1 i H 1

Î7
@5 sin~6at ! 1 8 sin~12at !

1 7 sin~18at !]T261 2 Î10

77
@9 sin~6at !

1 6 sin~12at ! 2 7 sin~18at !]T461

TABLE 3
(21)nI6(1 6 2Iz )n Expressed in Terms of Irreducible Tensors Tk61

n (21)nI6(1 6 2Iz)
n

1
Î6

3C2
~I ! T261

2 7H 8Î3

15C3
~I ! T361 2

Î2

5C1
~I ! ~3 2 4Î2 !T161J

3
4Î5

C4
~I ! T461 2

Î6

21C2
~I ! ~172 12Î2 !T261

4 7H16Î30

5C5
~I ! T561 2

16Î3

45C3
~I ! ~9 2 4Î2 !T361 1

Î2

35C1
~I ! ~512 104Î2 1 48Î4 !T161J

5
16Î42

3C6
~I ! T661 2

Î5

11C4
~I ! ~5202 160Î2 !T461 1

Î6

63C2
~I ! ~2612 280Î2 1 80Î4 !T261

6 7H128Î14

7C7
~I ! T761 2

Î30

13C5
~I ! ~8482 192Î2 !T561 1

2Î3

495C3
~I ! ~72122 4960Î2 1 960Î4 ! 2

Î2

105C1
~I ! ~7832 1884Î2 1 1360Î4 2 320Î6 !T161JT361

7
96Î2

C8
~I ! T861 2

Î42

15C6
~I ! ~25762 448Î2 !T661 1

Î5

143C4
~I ! ~990922 48160Î2 1 6720Î4 !T461 2

Î6

99C2
~I ! ~35432 4508Î2 1 2000Î 4 2 320Î 6 !T261

8
7H256Î10

3C9
~I ! T961 2

Î14

17C7
~I ! ~148482 2048Î2 !T761 1

Î30

65C5
~I ! ~934082 34048Î2 1 3584Î4 !T561

2
Î3

6435C3
~I ! ~24918722 2067072Î2 1 627200Î4 2 71680Î6 !T361 1

Î2

165C1
~I !~106292 27696Î2 1 24032Î4 2 8960Î6 1 1280Î8 !T161J
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1 Î 7

11
@5 sin~6at ! 2 4 sin~12at !

1 sin~18at !]T661J [A15]

G6
~9/ 2! ~3at! 5 7 H 1

Î165
@251 48 cos~6at! 1 42 cos~12at!

1 32 cos~18at! 1 18 cos~24at!#T161

2
1

Î715
@501 76 cos~6at! 1 14 cos~12at!

2 56 cos~18at! 2 84 cos~24at!#T361

1 Î 2

13
@5 1 4 cos~6at! 2 7 cos~12at!

2 8 cos~18at! 1 6 cos~24at!#T561

2 Î 14

7293
@502 12 cos~6at!

2 96 cos~12at! 1 76 cos~18at!

2 18 cos~24at!#T761 1 Î 2

2431

3 @1052 168 cos~6at! 1 84 cos~12at!

2 24 cos~18at! 1 3 cos~24at!#T961J

1 iHÎ 2

11
@4 sin~6at! 1 7 sin~12at!

1 8 sin~18at! 1 6 sin~24at!#T261

2
1

Î143
@36 sin~6at ! 1 42 sin~12at !

1 8 sin~18at ! 2 36 sin~24at !#T461

1 Î14

55
@8 sin~6at ! 1 2 sin~12at !

2 8 sin~18at ! 1 3 sin~24at !#T661

2 Î 2

175
@84 sin~6at ! 2 84 sin~12at !

1 36 sin~18at ! 2 sin~24at !#T861J .

[A16]

Under the rotationR 5 exp(2iuIy), Tk61 is converted into
(q52k

k dq61
(k) (u )Tkq, where dq61

(k) (u) are the reduced Wigner
rotation matrix elements listed in Table 4 forq 5 0 andk 5 1,
2, . . ., 9. Thediagonal part ofRTk61R

21 is d061
(k) (u)Tk0. Ac-

cording to the definition of the functionfk(u, at) (Eq. [5]), the
diagonal part of1

2
R{ G1

(I) 1 G2
(I)} R21 is (oddk fk(u, at) Tk0 and

the diagonal part of 1/2i R{ G1
(I) 2 G2

(I)} R21 is (evenk fk(u,

TABLE 4
Reduced Wigner Rotation Elements d061

(k) (u)

k d061
(k) (u)

1 6
1

Î2
sin u

2 6 Î3

8
sin 2u

3 6
Î3

4
sin u ~5 cos2 u 2 1!

4 6
Î5

16
sin 2u ~1 1 7 cos 2u !

5 6
Î30

128
sin u ~151 28 cos 2u 1 21 cos 4u !

6 6
Î42

256
sin 2u ~191 12 cos 2u 1 33 cos 4u !

7 6
Î14

2048
sin u ~3501 675 cos 2u 1 594 cos 4u 1 429 cos 6u !

8 6
3Î2

4096
sin 2u ~1781 869 cos 2u 1 286 cos4u 1 715 cos 6u !

9 6
3Î10

32768
sin u ~22051 4312 cos 2u 1 4004 cos 4u 1 3432 cos 6u 1 2431 cos 8u !

Note.The reduced Wigner rotation elements ofk 5 1, 2, 3 are given in Ref. (17). The other elements ofk 5 4, 5, 6, 7, 8, 9 are obtained by using the formula
given in Ref. (19).
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at)Tk0. Therefore, using Table 4 and Eqs. [A11]–[A16], it is
straightforward to obtainfk(u, at) as follows:

For spinI 5 1,

f1~u, at ! 5 2 Î2 cos 3at sin u,

f2~u, at ! 5 Î3

2
sin 3at sin 2u . [A17]

For spinI 5 3
2
,

f1~u, at ! 5 2
1

Î5
@2 1 3 cos~6at !#sin u,

f2~u, at ! 5
3

2
sin~6at !sin 2u

f3~u, at ! 5 2
3

2Î5
@21 1 cos~6at !#

3 sinu ~5 cos2u 2 1!. [A18]

For spinI 5 5
2
,

f1~u, at! 5 2
1

Î70
@9 1 16 cos~6at! 1 10 cos~12at!#sinu

f2~u, at ! 5
1

2 Î3

7
@4 sin~6at ! 1 5 sin~12at !#sin 2u

f3~u, at ! 5 2
1

2Î5
@23 2 2 cos~6at !

1 5 cos~12at !]sin u ~5 cos2u 2 1!

f4~u, at ! 5
5

8Î7
@22 sin~6at ! 1 sin~12at !#

3 sin2u ~1 1 7 cos 2u !

f5~u, at ! 5 2
5

64Î7
@3 2 4 cos~6at ! 1 cos~12at !#

3 sin u @15 1 28 cos 2u 1 21 cos 4u # .

[A19]

For spinI 5 3,

f1~u, at ! 5 2
1

Î7
@6 cos~3at ! 1 5 cos~9at !

1 3 cos~15at !]sin u

f2~u, at ! 5
1

320 Î3

7
@320 sin~3at ! 2 75 sin~9at !

1 926 sin~15at !]sin 2u

f3~u, at ! 5
Î6

8
@30 cos~3at ! 2 39 cos~9at !

1 9 cos~15at !]sin u ~5 cos2u 2 1!

f4~u, at ! 5 2
5

4Î154
@3 sin~3at ! 1 4 sin~9at !

2 3 sin~15at !]sin 2u ~1 1 7 cos 2u !

f5~u, at ! 5 2
5

64 Î3

7
@2 cos~3at !

2 3 cos~9at ! 1 cos~15at !]

3 sin u @15 1 28 cos 2u 1 21 cos 4u #

f6~u, at ! 5
1

128 Î21

11
@10 sin~3at !

2 5 sin~9at ! 1 sin~15at !]

3 sin 2u ~19 1 12 cos 2u 1 33 cos 4u ! .

[A20]

For spinI 5 7
2
,

f1~u, at ! 5 2
1

Î42
@8 1 15 cos~6at ! 1 12 cos~12at !

1 7 cos~18at !]sin u

f2~u, at ! 5 Î 3

56
@5 sin~6at ! 1 8 sin~12at !

1 7 sin~18at !]sin 2u

f3~u, at ! 5
1

2 Î 3

22
@4 1 5 cos~6at ! 2 2 cos~12at !

2 7 cos~18at !]sin u (5 cos2u 2 1)

f4~u, at ! 5 2
5

8Î154
@9 sin~6at ! 1 6 sin~12at !

2 7 sin~18at !]sin 2u ~1 1 7 cos2u !

f5~u, at ! 5 2
1

1664 Î78

7
@40 1 5 cos~6at !

2 80 cos~12at ! 1 35 cos~18at !]

3 sin u @15 1 28 cos 2u 1 21 cos 4u #

f6~u, at ! 5
7

256 Î 6

11
@5 sin~6at !

2 4 sin~12at ! 1 sin~18at !]

3 sin 2u ~19 1 12 cos 2u 1 33 cos 4u !

f7~u, at ! 5
7

512Î858
@10 2 15 cos~6at !
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1 6 cos~12at ! 2 cos~18at !]

3 sin u ~3501 675 cos 2u

1 594 cos 4u 1 429 cos 6u ) . [A21]

For spinI 5 9
2
,

f1~u, at ! 5 2
1

Î330
@251 48 cos~6at !

1 42 cos~12at ! 1 32 cos~18at !

1 18 cos~24at !]sin u

f2~u, at ! 5
1

2 Î 3

11
@4 sin~6at ! 1 7 sin~12at !

1 8 sin~18at! 1 6 sin~24at!]sin 2u

f3~u, at ! 5
1

2 Î 3

715
@25 1 38 cos~6at !

1 7 cos~12at ! 2 28 cos~18at !

2 42 cos~24at!]sin u~5 cos2u 2 1!

f4~u, at! 5 2
1

8 Î 5

143
@18 sin~6at! 1 21 sin~12at!

1 4 sin~18at ! 2 18 sin~24at !]

3 sin 2u ~1 1 7 cos 2u !

f5~u, at! 5 2
1

64 Î15

13
@5 1 4 cos~6at! 2 7 cos~12at!

2 8 cos~18at ! 1 6 cos~24at !]

3 sin u @15 1 28 cos 2u 1 21 cos 4u #

f6~u, at ! 5
7

128 Î 3

55
@8 sin~6at ! 1 2 sin~12at !

2 8 sin~18at !) 1 3 sin~24at !]

3 sin 2u ~19 1 12 cos 2u 1 33 cos 4u !

f7~u, at ! 5
7

512Î7293
@25 2 6 cos~6at !

2 48 cos~12at ! 1 38 cos~18at !

2 9 cos~24at!]sin u~3501 675 cos 2u

1 594 cos 4u 1 429 cos 6u )

f8~u, at ! 5 2
3

2048Î175
@84 sin~6at !

2 84 sin~12at ! 1 36 sin~18at !

2 sin~24at !]sin 2u ~1781 869 cos 2u

1 286 cos 4u 1 715 cos 6u )

f9~u, at ! 5 2
3

16384 Î 5

2431

3 @1052 168 cos~6at ! 1 84 cos~12at !

2 24 cos~18at ! 1 3 cos~24at !#

3 sin u ~22051 4312 cos 2u 1 4004

3 cos 4u 1 3432 cos 6u 1 2431cos8u ! .

[A22]
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